Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252473

RESUMO

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Assuntos
Espaço Extracelular , Fator 2 de Crescimento de Fibroblastos , Dimerização , ATPase Trocadora de Sódio-Potássio , Dissulfetos
2.
Front Immunol ; 14: 1060540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817448

RESUMO

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). Methods: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). Results: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. Conclusions: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.


Assuntos
Carcinoma Ductal Pancreático , Vírus Oncolíticos , Neoplasias Pancreáticas , Cricetinae , Animais , Camundongos , Mesocricetus , Inibidores de Checkpoint Imunológico , Adenoviridae , Neoplasias Pancreáticas/terapia , Imunoterapia , Anticorpos Monoclonais , Replicação Viral , Neoplasias Pancreáticas
3.
Comput Struct Biotechnol J ; 20: 3336-3346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720615

RESUMO

SARS-CoV-2 main protease (Mpro) involved in COVID-19 is required for maturation of the virus and infection of host cells. The key question is how to block the activity of Mpro. By combining atomistic simulations with machine learning, we found that the enzyme regulates its own activity by a collective allosteric mechanism that involves dimerization and binding of a single substrate. At the core of the collective mechanism is the coupling between the catalytic site residues, H41 and C145, which direct the activity of Mpro dimer, and two salt bridges formed between R4 and E290 at the dimer interface. If these salt bridges are mutated, the activity of Mpro is blocked. The results suggest that dimerization of main proteases is a general mechanism to foster coronavirus proliferation, and propose a robust drug-based strategy that does not depend on the frequently mutating spike proteins at the viral envelope used to develop vaccines.

4.
Nat Microbiol ; 2(12): 1616-1623, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29038444

RESUMO

The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1,2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.


Assuntos
Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Lipídeos de Membrana/química , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cristalografia por Raios X , DNA Bacteriano/genética , Difusão , Vetores Genéticos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bicamadas Lipídicas , Lipopolissacarídeos/química , Simulação de Dinâmica Molecular , Mutação , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Porinas/química , Conformação Proteica
5.
Biophys J ; 112(5): 953-965, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297654

RESUMO

Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Água/metabolismo , Animais , Aquaporinas/genética , Transporte Biológico , Proteínas do Olho/genética , Simulação de Dinâmica Molecular , Mutação , Permeabilidade , Porosidade , Conformação Proteica , Estabilidade Proteica , Ovinos
6.
J Biol Chem ; 291(36): 19184-95, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27435677

RESUMO

Ammonia is a biologically potent molecule, and the regulation of ammonia levels in the mammalian body is, therefore, strictly controlled. The molecular paths of ammonia permeation across plasma membranes remain ill-defined, but the structural similarity of water and NH3 has pointed to the aquaporins as putative NH3-permeable pores. Accordingly, a range of aquaporins from mammals, plants, fungi, and protozoans demonstrates ammonia permeability. Aquaporin 4 (AQP4) is highly expressed at perivascular glia end-feet in the mammalian brain and may, with this prominent localization at the blood-brain-interface, participate in the exchange of ammonia, which is required to sustain the glutamate-glutamine cycle. Here we observe that AQP4-expressing Xenopus oocytes display a reflection coefficient <1 for NH4Cl at pH 8.0, at which pH an increased amount of the ammonia occurs in the form of NH3 Taken together with an NH4Cl-mediated intracellular alkalization (or lesser acidification) of AQP4-expressing oocytes, these data suggest that NH3 is able to permeate the pore of AQP4. Exposure to NH4Cl increased the membrane currents to a similar extent in uninjected oocytes and in oocytes expressing AQP4, indicating that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane route for NH3 Our data propose that AQP4 belongs to the growing list of NH3-permeable water channels.


Assuntos
Amônia/química , Amônia/metabolismo , Aquaporina 4/química , Aquaporina 4/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Cloreto de Amônio/química , Cloreto de Amônio/metabolismo , Animais , Aquaporina 4/genética , Aquaporinas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Canais Iônicos/genética , Transporte de Íons/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Oócitos , Ratos , Xenopus laevis
7.
PLoS Biol ; 14(3): e1002411, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27028365

RESUMO

Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.


Assuntos
Amônia/metabolismo , Aquaporinas/química , Proteínas de Arabidopsis/química , Aquaporinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Cristalização , Estrutura Molecular
8.
Structure ; 23(12): 2309-2318, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26585511

RESUMO

Aquaporin 4 (AQP4) is a transmembrane protein from the aquaporin family and is the predominant water channel in the mammalian brain. The regulation of permeability of this protein could be of potential therapeutic use to treat various forms of damage to the nervous tissue. In this work, based on data obtained from in silico and in vitro studies, a pH sensitivity that regulates the osmotic water permeability of AQP4 is demonstrated. The results indicate that AQP4 has increased water permeability at conditions of low pH in atomistic computer simulations and experiments carried out on Xenopus oocytes expressing AQP4. With molecular dynamics simulations, this effect was traced to a histidine residue (H95) located in the cytoplasmic lumen of AQP4. A mutant form of AQP4, in which H95 was replaced with an alanine (H95A), loses sensitivity to cytoplasmic pH changes in in vitro osmotic water permeability, thereby substantiating the in silico work.


Assuntos
Aquaporina 4/química , Ativação do Canal Iônico , Sequência de Aminoácidos , Aquaporina 4/metabolismo , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oócitos
9.
Biophys J ; 105(1): 211-21, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823241

RESUMO

Tryptophan is widely used as an intrinsic fluorophore for studies of protein structure and dynamics. Its fluorescence is known to have two decay components with lifetimes of 0.5 and 3.1 ns. In this work we measure the ultrafast dynamics of Tryptophan at <100 fs through measurements and modeling of the Raman excitation profiles with time-dependent wave packet propagation theory. We use a Brownian oscillator model to simulate the water-tryptophan interaction. Upon photoexcitation to the higher singlet electronic state (Bb) the structure of tryptophan is distorted to an overall expansion of the pyrrole and benzene rings. The total reorganization energy for Trp in water is estimated to be 2169 cm(-1) with a 1230 cm(-1) contribution from the inertial response of water. The value of reorganization energy of water corresponding to the fast response is found to be higher than that obtained upon excitation to the La state by previous studies that used computational simulations. The long-time dynamics of Trp manifests as a conformational heterogeneity at shorter times and contributes to inhomogeneous broadening of the Raman profiles (315 cm(-1)).


Assuntos
Solventes/química , Análise Espectral Raman , Triptofano/química , Cinética , Termodinâmica
10.
Glia ; 61(7): 1101-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616425

RESUMO

Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4 is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic cell line. This possibility was, however, questioned based on the crystal structure of the human AQP4. Our study aimed to resolve if Ser(111) was indeed a site involved in phosphorylation-mediated gating of AQP4. The water permeability of AQP4-expressing Xenopus oocytes was not altered by a range of activators and inhibitors of PKG and PKA. Mutation of Ser(111) to alanine or aspartate (to prevent or mimic phosphorylation) did not change the water permeability of AQP4. PKG activation had no effect on the water permeability of AQP4 in primary cultures of rat astrocytes. Molecular dynamics simulations of a phosphorylation of AQP4.Ser(111) recorded no phosphorylation-induced change in water permeability. A phospho-specific antibody, exclusively recognizing AQP4 when phosphorylated on Ser(111) , failed to detect phosphorylation in cell lysate of rat brain stimulated by conditions proposed to induce phosphorylation of this residue. Thus, our data indicate a lack of phosphorylation of Ser(111) and of phosphorylation-dependent gating of AQP4.


Assuntos
Aquaporina 4/metabolismo , Ativação do Canal Iônico/fisiologia , Serina/metabolismo , Animais , Aquaporina 4/genética , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Estimulação Elétrica , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Microinjeções , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Permeabilidade/efeitos dos fármacos , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Ratos Sprague-Dawley , Serina/genética , Xenopus laevis
11.
Phys Chem Chem Phys ; 11(26): 5253-62, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19551192

RESUMO

The phosphodiester linkage central to biological systems has been modeled by methyl phosphodiester (MPDE) in various theoretical and experimental studies. Under physiological conditions, hydrolysis of the phosphodiester is negligible, however this process can be catalyzed in the presence of metal ions. To understand the role of alkali metals in MPDE hydrolysis and, in particular, how it influences the reaction pathway and the associated energetics, density functional calculations employing the 6-31+G(d,p) basis set have been carried out. Different pathways that include the reactant, intermediates and the products have been investigated for MPDE hydrolysis catalyzed by one or two lithium ions, characterized as stationary point geometries on the potential energy surface. The pathways A and B incorporate a single lithium ion bonded to different oxygens of the diester functionality. In pathway C, a six-membered ring was noticed wherein the nucleophile bridges two lithium ions interacting with different oxygens of the phosphoryl group. Furthermore, in the pathway (D) incorporating two lithium ions, one of the lithium ions interacts with the hydroxyl group and another with the methoxy oxygen; both metal ions are coordinated by the same phosphoryl oxygen. In addition to this, yet another pathway (E), where the metal ions are bound to different oxygens of the phosphoryl group, has also been dealt with. The calculations have shown that the A and B pathways lead to a single step reaction. A three-step mechanism including the nucleophilic (hydroxyl) attack, rotation of a methyl group and, finally, departure of the methoxy group has been predicted for the D and E profiles. Both D and E pathways are favored equally (with a marginal difference of 0.3 kJ mol(-1) in their activation energies) in the gas phase and a transition state corresponding to nucleophilic attack with an energy barrier of 32.5 kJ mol(-1) was located when lithium was used. A penta-coordinated phosphorous intermediate on the potential energy surface was characterized along these pathways. MPDE hydrolysis yielded a lower energy barrier for lithium than those for the remaining alkali metal ions. This agrees well with the experimentally observed trend for the hydrolysis rates: Li > Na > K. Self consistent reaction field (SCRF) calculations reveal the lower energy barrier between the reactant and the transition state for the nucleophilic attack in nonpolar solvents. The extent of bond formation (or cleavage) in different stationary point structures along the reaction path as estimated from the electron density at the bond critical point in the molecular electron density topography, has proven useful in distinguishing the associative or dissociative reaction pathways.


Assuntos
Simulação por Computador , Metais Alcalinos/química , Organofosfatos/química , Hidrólise , Lítio/química , Modelos Moleculares , Estrutura Molecular , Potássio/química , Sódio/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...